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Flow in granular media

Mair and Abe (2011) Sammis et al. (1987)
Johnson et al. (2008)

l Of relevance to materials processing, e.g., plastics, 
colloids, oil sand, tar sand, pharmaceuticals

l Natural phenomena, e.g., earthquakes, landslides, 
avalanches

l Strongly nonequilibrium phenomena of interest in 
physics





Nonlinear behavior in glass bead 
packs

l ‘Fast nonlinear dynamics’ is evidenced 
by the change of the resonance 
frequency, and therefore the elastic 
moduli, as a function of the driving 
amplitude.

l ‘Slow dynamics’ seen with the gradual 
recovery of the elastic moduli upon 
cessation of acoustic vibration

l Similar behavior observed in 
consolidated granular materials

l In earth science, relevant to fault 
damage, wave velocity drop, and 
healing P. A. Johnson and X. Jia, Nature (2005)



Nonlinear behavior in glass bead 
packs

l We focus on softening here.
l Slow relaxation of the granular 

glass bead pack after the cessation 
of external disturbances was 
addressed in CL et al., JGR (2017).

l We attribute deformation and 
plasticity to rearranging clusters of 
grains called shear transformation 
zones (STZs)

l Goal: to gain a unified 
understanding of the dynamics of 
driven granular media

P. A. Johnson and X. Jia, Nature (2005)



Outline

l STZ theory – an introduction
l Granular flow: stick-slip instabilities
l ‘Linearized’ STZ theory and wave perturbation
l Probing softening and resonance shift
l Glassy dynamics



Part I
STZ theory: an introduction

[C. K. C. Lieou and J.S. Langer,
PRE 85, 061308 (2012)]



STZ's – microscopic description of 
shear deformation in granular media
l Starting point: molecular/granular rearrangements 

lead to deformation of solids
l Shear transformation zones are local flow defects 

susceptible to shear deformation and contact change

[M. L. Falk and J. S. Langer, PRE 57, 7192 (1998)]



STZ theory: a short introduction
• To a good approximation, STZs come in two states; 

stable, and unstable, with respect to the deviatoric 
stress.

Molecular time scale (or 
inverse attempt frequency)

stress-driven transitions 
between the two possible states

noise-driven creation and 
annihilation of STZ defects



STZ theory: a short introduction

l The STZ density at the stationary state

is given by a thermodynamically-defined 
‘compactivity’ with structural origins, reflecting 
disorder in the granular packing

l Let us briefly discuss the thermodynamic origins of 
the compactivity. Keep in mind: we want to describe 
the dynamics in a statistical fashion, without keeping 
track of every single grain.



Why thermodynamics?

l During the irreversible plastic deformation of a 
disordered solid, particle rearrangements drive the 
slow configurational degrees of freedom out of 
equilibrium with the heat bath.

Deforming system

Kinetic subsystem
(fast)

Configurational subsystem
(slow)

weak 
coupling



Why thermodynamics?

l The kinetic-vibrational and configurational degrees 
of freedom are thus governed by two different 
temperatures – the "effective temperature" in the 
latter case.

l But in hard-spheres or particulate media, there is no 
intrinsic energy scale and no "configurational 
energy".



Why thermodynamics?

l Instead, the compactivity

characterizes the state of configurational disorder of a 
granular medium, with configurational entropy SC.

l Analogous to temperature – but (configurational) energy is 
now replaced by volume.

l It can be shown that the STZ density relaxes toward the 
value

where vZ is the excess volume per STZ. For convenience, we
use the dimensionless compactivity χ = X / vZ.



STZ theory: a short introduction

l Recall: the STZ density at the stationary state

l Plastic deformation and flow occurs when STZ’s 
‘flip’ from one state to another, i.e., nonaffine 
rearrangement of grains (in the sense of change in 
contacts)



STZ theory: a short introduction
l STZ orientational bias

l Define combinations of rate factors

l After change of variables

l It can be shown that                                   
(!p = pressure)



Part II
Granular flow: stick-slip instabilities

[C. K. C. Lieou et al.,
Phys. Rev. E 92, 022209 (2015);

J. Geophys. Res. 121, 1483-1496 (2016);
J. Geophys. Res. 122, 295-307 (2017)]



Non-monotonicity implies instability?

l There is a one-to-one correspondence between the 
compactivity χ and the experimentally-measured layer 
thickness or volume. For frictional particles we observe non-
monotonicity.

l If the minimum flow stress varies with χ in that region, then 
there can be a rate-weakening regime.



What controls the compactivity?

l The compactivity is controlled by the strain rate and
the vibration intensity – again from experiments.

l It may make sense to consider the vibration-
controlled compactivity and the shear-controlled 
compactivity on the same footing: both pertain to the 
configurational subsystem, especially if the 
underlying time scales are not too different.

Shearing only, no 
vibrations or interparticle 

friction

Unsheared, vibrations 
only



What controls the compactivity?

l Also, for strongly vibrated granular media, the 
(irreversible) work done by vibrations may not be 
negligible – may need to properly take this into 
account.

work done by external 
acoustic vibrations

coupling to the 
environment (thermal 
temperature T = 0)

shearing interparticle 
friction

vibrations

Shear rate sets up a time scale 
above which vibrations cannot 
compete with shearing to cause 
grains to explore configurations –
exponential cut-off



What controls the compactivity?
Assume linear 
elasticity; elastic 
strain rate is 
difference between 
total and plastic parts

Shearing drives 
towards hard-sphere 
state

Vibrations compactify 
to some state 
determined by 
vibration intensity

Friction generates 
internal acoustic noise

l Dynamical equations:

l The equation for χ is a consequence of the first law of 
thermodynamics.

l We show below that interparticle friction causes stick-slip 
instabilities.



Theoretical predictions

• Stick phase corresponds 
to small but nonzero 
plastic strain rate, giving 
rise to creep and 
rounding of stress-strain 
curve

• "Preseismic slip" in 
geophysical terms

• Slip phase corresponds 
to dramatic increase of 
plastic strain rate and 
large displacement



Theoretical predictions

• Vibrations control stick-slip – may amplify 
amplitude, or suppress stick-slip after transient

• Short transient upon switching on or off of 
vibrations



Part III
‘Linearized’ STZ theory and wave perturbation
[C. K. C. Lieou et al., J. Geophys. Res. 122(9), 

6998-7008 (2017), and unpublished work]



Wave perturbation: linearize STZ 
equations

l Consider pressure waves for the time being; 
formulation for shear waves is almost identical

l Let ! be the stress amplitude
l Linearize STZ equations around the small quantities 
m and !:

Here



Wave perturbation: linearize STZ 
equations

l Combine these with the equations of motion:

l Use the ansatz

Total strain in terms 
of displacement

External forcing

Unperturbed modulus at 
max. packing fraction



Wave perturbation: linearize STZ 
equations

l The result is

where                 .
l Eliminating m and ! gives

with                                    , and                      . 



Part IV
Probing softening and resonance shift



Response function

l The relation between drive amplitude F
(corresponding to, e.g, voltage) and response 
amplitude u

prompts us to define the ‘response function’

l The norm of A(ω) gives the normalized strain 
amplitude; probing A(ω) gives the tuning curves and 
resonance peaks.



Modulus softening

l The ‘softened’ modulus M is given in terms of the 
resonance frequency ωres and the system size H by

l What controls the resonance frequency? Recall that 

If the compactivity χ varies with the strain amplitude 
(reasonable), the resonance frequency may shift!



Modulus softening

l Intuition: the compactivity χ must be an increasing 
function of the strain amplitude.

l More strain => Higher compactivity => More STZ 
defects => Granular material becomes softer!

l To fit with the experimental softening data, use the 
ansatz

Dynamic strain 
amplitude



Modulus softening
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Resonance shift

l By directly computing the response function

we can get the tuning curves (here shown for shear 
mode at p = 0.282 MPa):
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Part V
Glassy dynamics



STZ event rate, measured by fitting
l The inverse STZ event rate 1/R0, or the STZ event 

rate itself, offers a deep probe of glassy dynamics in 
the weakly perturbed granular packing:

l Is this related to STZ size?
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Probing connection between time 
scale and size distributions

l If one can trace and visualize the motion of grains, 
one could use the so-called D2

min criterion

[Falk and Langer, PRE, 1998]
l Or the four-point correlation function [Abate and 

Durian, PRE, 2007]



Probing connection between time 
scale and size distributions

l These measures tell us the heterogeneity of the 
particle displacements, and could tell us about the 
location of dynamical heterogeneities, aka STZs.

l Does the STZ size distribution bear any resemblance 
to the rate or time scale distribution? In the high-
pressure regime where 1/R0 is large, do the STZs 
mostly appear in the form of large clusters of 
dynamical heterogeneities? If yes, this will be very 
interesting.



Concluding remarks

l STZ theory describes defect dynamics and plasticity 
in granular materials

l Addresses inadequacies in other empirical theories
l Compactivity – describing structural disorder – is 

key variable that controls defect density
l STZ theory describes granular flow and stick-slip.
l Coupling linearized STZ theory with wave equations 

generates modulus softening and downwards 
resonance shift with increasing strain amplitude

l Shows definitively that STZ defects are responsible 
for softening and dissipative, nonlinear behavior


